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Abstract

The purpose of this paper is to derive optimal rules for variable-length mastery tests in case
three mastery classification decisions (nonmastery, partial mastery, and mastery) are
distinguished. In a variable-length or adaptive mastery test, the decision is to classify a subject
as a master, a partial master, a nonmaster, or continuing sampling and administering another
test item. The framework of minimax sequential decision theory is used; that is, optimal
sequential rules minimizing the maximum expected losses associated with all possible
decision rules. The binomial model is assumed for the conditional probability of a correct
response given the true level of functioning, whereas threshold loss is adopted for the loss
function involved. Monotonicity conditions are derived, that is, conditions sufficient for
optimal sequential rules to be in the form of cutting scores. The paper concludes with an

empirical example of a computerized adaptive mastery test for concept-learning in medicine.
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Introduction

Over the past few decades, several adaptive instructional programs have been implemented on
computers (e.g., Bejar & Braun, 1994; Bork, 1984; De Diana & Vos, 1988; Gegg-Harrison,
1992; Hambleton, 1974; Hansen, Ross, & Rakow, 1977; Kontos, 1985; Koper 1995; Vos,
1988, 1994a, 1994b, 1995a, 1995b, 1998a). Although these programs come in many forms, all
of these forms share the same basic design. All systems are basically series of comparatively
small instructional units or modules through which students are routed by means of a few
achievement test items administered right after a module. An important challenge to their
instructors is to adapt instruction to individual learner differences (aptitudes, prior knowledge)
and learning needs (amount and sequence of instruction).

A situation that often arises in such systems is the following: It is desired to classify
students as either a master or a nonmaster, i.e., those students who pass or fail the mastery test
at the end of the instructional unit. Students who pass the mastery test may proceed with the
next, presumably more complex module. Students who fail, however, are retained at the same
instructional unit.

The situation described above refers to a fixed-length mastery test, where the
performance on a fixed number of test items is used for deciding on either mastery or
nonmastery. The fixed-length mastery problem has been studied extensively in the literature
within the framework of (empirical) Bayesian decision theory (e.g., Cronbach & Gleser, 1965;
Davis et al., 1973; De Gruijter & Hambleton, 1984; Hambleton & Novick, 1973; Huynh,
1976, 1977, Swaminathan et al., 1975; van der Linden, 1980, 1990; van der Linden &
Mellenbergh, 1977; Wilcox, 1977). In addition, optimal rules for the fixed-length mastery
problem have also been derived within the framework of the minimax (Walld) strategy (e.g.,
Huynh, 1980; Veldhuijzen, 1982).

In both approaches, the following two basic elements are distinguished: A
psychometric model relating observed test scores and student's true level of functioning to
each other, and a loss structure evaluating the total costs and benefits of all possible decision
outcomes. Within the framework of Bayesian decision theory, optimal rules (i.e., the Bayes
rules) are obtained by minimizing the posterior expected loss. The Bayes principle assumes
that prior knowledge about student's true level of functioning is available and can be

characterized by a probability distribution called the prior.
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Using minimax decision theory, optimal rules (i.e., the minimax rules) are obtained by
minimizing the maximum expected losses associated with all possible decision rules.
Decision rules are hereby prescriptions specifying for each possible observed test score what
action has to be taken. In fact, the minimax principle assumes that it is best to prepare for the
worst and to establish the maximum expected loss for-each possible decision rule (e.g., van
der Linden, 1980). In other words, the minimax decision rule is a bit conservative and
pessimistic (Coombs, Dawes, & Tversky, 1970).

Although the minimax principle assumes that no prior knowledge about true level of
functioning is available, a minimax rule can be conceived as a rule that is based on
minimization of posterior expected loss as well, but under the restriction that the prior is the
least favorable element of the class of priors (e.g., Ferguson, 1967, Sect. 1.6). In other words,
there exists a (least favorable) prior distribution on the true level of functioning such that the
corresponding Bayes solution is exactly the same as the minimax decision rule (Huynh, 1980).

The test at the end of the instructional unit does not necessarily have to be a fixed-
length mastery test but might also be a variable-length mastery test. In this case, in addition to
the decisions declaring mastery or nonmastery, also the decision of continuing sampling and
administering another item is available. In fact, variable-length mastery tests are more
common in individualized instructional programs than fixed-length mastery tests. This is
because variable-length mastery tests offer the possibility to provide shorter tests for those
students who have clearly attained a certain level of mastery (or clearly nonmastery) and
longer tests for whom the mastery decision is not as clear-cut (Lewis & Sheehan, 1990). The
variable-length mastery test is also known as an adaptive mastery test (AMT).

The purpose of this paper is to derive optimal decision rules for adaptive mastery
testing. Doing so, in addition to the decision of continuing sampling and administering
another item, not two but three possible classification decisions are distinguished, namely
declaring mastery, partial mastery, or nonmastery.

A useful application of the derived optimal rules is decision making in computerized
adaptive instructional systems. The successful implementation of a computerized adaptive
instructional system depends, at least in part, upon the availability of appropriate testing and
decision making procedures to guide the student through the system (Hambleton, 1974). For
instance, if a student is not directed to an appropriate module, his/her motivation may decrease

due to the instruction not being matched to his/her specific learning characteristics.
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Several approaches have been proposed for deriving optimal decision rules for the
variable-length mastery problem. One of the earliest approaches dates back to Ferguson
(1969a, 1969b) using Wald's sequential probabily ratio test (SPRT). In Ferguson's approach,
the condional probability of a correct response given the true level of functioning (i.e., the
psychometric model) is modeled as a binomial distribution. Alternative adaptive mastery
testing procedures within an SPRT-framework, in combination with item response theory for
modelling the conditional probability of a correct response given the true level of functioning,
have been proposed by Kingsbury and Weiss (1983), Reckase (1983), and Spray and Reckase
(1996).

Recently, Lewis and Sheehan (1990) and Sheehan and Lewis (1992) have proposed
Bayesian sequential decision theory (e.g., DeGroot, 1970; Ferguson, 1967; Lehmann, 1959;
Lindgren, 1976) to derive optimal rules for the variable-length mastery problem. Like in the
fixed-length mastery problem, optimal sequential rules are obtained by choosing the action
(i.e., mastery, nonmastery, or continuing sampling) that minimizes posterior expected loss at
each stage of sampling using techniques of dynamic programming (i.e., backward induction).
Doing so, the posterior expected loss associated with continuing sampling is determined by
averaging the posterior expected loss associated with each of the possible future decision
outcomes relative to the probability of observing those outcomes. For known psychometric
model, prior, and observed item response vector, this probability can be calculated. As pointed
out by Lewis and Sheehan (1990), the action chosen at each stage of sampling is optimal with
respect to the entire adaptive mastery testing procedure.

In the present paper, the framework of minimax sequential decision theory (e.g.,
DeGroot, 1970; Ferguson, 1967, Lehmann, 1959; Lindgren, 1976) is proposed to derive
optimal rules for the variable-length mastery problem; that is, minimizing the maximum
expected losses associated with each of the possible decision outcomes. The maximum
expected loss associated with continuing sampling is determined again by averaging the
maximum expected losses associated with each of the possible future decision outcomes
relative to the probability of observing those outcomes. For the prior needed to compute this
probability, the least favorable prior will be taken.

Optimal sequential rules for the adaptive four-action mastery problem, following
Ferguson (1969a, 1969b), will be derived under the assumption of a binomial model for the
conditional probability of a correct response given the true level of functioning. The choice of

this psychometric model assumes that, given the true level of functioning, each item has the
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same probability of being correctly answered, or that items are sampled at random. For the
loss structure involved, the well-known threshold loss function is adopted. Furthermore,
conditions sufficient for optimal sequential rules to be monotone, that is, in the form of
cutting scores, are derived. The procedures for sequentially setting optimal cutting scores are
demonstrated by an empirical example of a computerized adaptive mastery test for concept-

learning in medicine.
Notations

Within the framework of both minimax and Bayesian sequential decision theory, optimal rules
can be obtained without specifying a maximum test length. In the following, however, an
adaptive four-action mastery test is supposed to have a maximum length of n (n 2 1). As
pointed out by Ferguson (1969a, 1969b), a maximum test length is needed in order to classify
within a reasonable period of time those students for whom the decision of declaring mastery,
partial mastery, or nonmastery is not as clear-cut.

In the following, the observed item response at each stage of sampling k (1 <k < n) for
a randomly sampled student will be denoted by a discrete random variable Xy, with
realization xk. The observed response variables X|,..., Xk are assumed to be independent and
identically distributed for each value of k (I < k <€ n), and take the values 0 and 1 for
respectively correct and incorrect responses to the kth item. Furthermore, let the observed
number-correct score be denoted by a discrete random variable S = Xy +..+ Xk (1 £k < n),
with realization sk = x| +...+ xg (0 <sg < k).

Student's true level of functioning is unknown due to measurement and sampling error.
All that is known is his/her observed number- correct score from a small sample of test items.
In other words, the mastery test is not a perfect indicator of student's true performance.
Therefore, let student's true level of functioning be denoted by a continuous random variable
T, with realization t € [0,1].

Finally, assuming X| = x1,..,Xk = xi has been observed, the two basic elements of
minimax sequential decision making discussed earlier can now be formulated as follows: A
psychometric model relating obseﬁed number-correct score sk to student's true level of

functioning t at each stage of sampling k (1 <k < n), and a loss function describing the loss
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I(aj(x1,...,Xk):t) incurred when action aj(xj,...,xi) is taken for the student whose true level of

functioning is t.
Statement of the Adaptive Four-Action Mastery Problem

In the following, linking up with common practice in criterion-referenced testing, the decision
rules for the adaptilve four-action mastery problem at each stage of sampling k (1 € k < n) are
assumed to be in the form of sequential cutting scores scq(k) and sco(k) on the observed
number-correct scale Sk, where s¢ (k) < sc2(k). Conditions sufficient for sequentially setting
cutting scores (i.e., monotonicity conditions) are given later on.

Given the observed item response vector (X1,...Xk), the following four actions can be
taken at each stage of sampling k (1 < k < n): First, the action nonmastery ap(xp,...,xg) is
taken if sy < s¢q(k). Second, the action partial mastery ay(x{,...,xk) is taken if s¢1(k) < sk <
sc2(k). Third, the action mastery a3(xy,...,xy) is taken if sy > sco(k). Fourth, the action
continue sampling ag(x{,....xk) is taken if the maximum expected loss associated with this
rule is smallest among all possible decision rules. At the final stage of sampling, n, only one
of the three classification actions nonmastery, partial mastery, or mastery can be taken.

In addition to the sequential cutting scores s (k) and scp(k), criteria levels t;] and teo
(0 <t¢] <t < 1) on the true level of functioning scale T can be identified. A student is
considered a true nonmaster and true master if his/her true level of functioning t is smaller or
larger than t¢) and t.7, respectively. Furthermore, a student is considered a partial true master
if tc] <t < tc2. Unlike the sequential cutting scores s¢1(k) and scp(k), the criteria levels tg]
and t¢ do not depend on the observed item response vector (x{,....xk) but must be specified
in advance by the decision-maker using methods of standard setting (e.g., Angoff, 1971; Ebel,
1972; Nedelsky, 1954).

Given the values of the criteria levels tc] and tep on T, the adaptive four-action
mastery problem can now be stated at each stage of sampling k (1 <k < n) as choosing values
of sc1(k) and scp(k) or continue sampling such that the maximum expected loss associated
with the preferred rule among all possible decision rules is minimal. At the final stage of
sampling, n, the problem reduces to choosing values of s.(n) and s¢p(n) such that the
maximum expected loss associated with action a|(x{,....Xp), a2(X],....Xp), OF a3(X|,....Xp) is

the smallest.




Minimax Sequential Procedure - 7

Constant Losses

Generally speaking, a loss function evaluates for each possible action the consequences for a
student whose true level of functioning is t. These consequences may reflect all moral, ethical,
social, economic, psychological, etc. considerations deemed relevant.

As earlier indicated, here the well-known threshold loss function (e.g., Ben-Shakhar &
Beller, 1983; Chuang et 'aI., 1981; Davis et al. 1973; Hambleton & Novick, 1973; Huynh,
1976; Lewis & Sheehan, 1990; Novick & Lewis, 1974; Raju et al, 1991; Swaminathan et al.,
1975) is adopted as the loss structure. The choice of this function implies that the
“seriousness” of all possible consequences of the decisions can be summarized by possibly
different constants, one for each of the possible decision outcomes. Other loss functions have
also been frequently used in the literature, such as linear loss (e.g., Huynh, 1980; van der
Linden & Vos, 1996; Vos, 1990, 1991, 1995¢c, 1997a, 1997b, 1998a, 1998b, 1998c) and
normal-ogive loss (e.g., Novick & Lindley, 1979; van der Linden, 1981).

For our variable-length mastery problem, a threshold loss function can be formulated
as a natural extension of the one for the standard fixed-length two-action mastery problem at

each stage of sampling k (1 < k <n) as follows (see also Lewis & Sheehan, 1990):

Table 1. Table for Threshold Loss Function at Stage k (1 £ k £ n) of Sampling

True Level
T<t t1 <T <t T2t
Action
aj(xi, ..., Xk) ke 112 + ke 113 + ke
ax(xy, ..., Xk) l12 + ke ke l>3 + ke
az(Xiy, ..., Xk) l3; + ke I35 + ke ke

The value e represents the costs of administering one random item. For the sake of
simplicity, following Lewis and Sheehan (1990), these costs are assumed to be equal for each
decision outcome as well as for each sampling occasion. Applying an admissable positive
linear transformation (e.g., Luce & Raiffa, 1957), and assuming the losses 1], I22, and 133
associated with the correct decision outcomes are equal and take the smallest values, the
threshold loss function in Table | was rescaled in such a way that 11, 12, and 133 were equal

to zero.

4‘].
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Furthermore, the loss function associated with action aj(xq,..,.xx) must be
nondecreasing in t, since action aj(x,...,Xg) is most appropriate when t is small. Similarly, the
loss function associated with action a3 (x{,...,.xx) must be nonincreasing in t due to the fact
that action a3(x{,...,Xk) is most appropriate when t takes large values. Since it cannot be
determined beforehand whether 1] is smaller than, equal to, or larger than 133, the form of
the loss function associated with action ap(x1,...,xk) is unknown. The loss associated with the
correct partial mastery decision (i.e., l2), however, must be the smallest.

The loss parameters ljj (i = 1,2,3; i # j) associated with the incorrect decisions have to
be empirically assessed, for which several methods have been proposed in the literature. Most
texts on decision theory, however, propose lottery methods (e.g., Luce & Raiffa, 1957) for
assessing loss functions empirically. In general, the consequences of each pair of actions and
true level of functioning are scaled in these methods by looking at the most and least preferred

outcomes (see also Vos, 1988).
Psychometric Model

A psychometric model is needed to specify the statistical relation between the observed
number-correct score and student's true level of functioning at each stage of sampling. As
earlier remarked, here the well-known binomial model will be adopted.

As indicated by van den Brink (1982), when tests are criterion-referenced tests by
means of sampling from item domains, such as in our adaptive four-action mastery problem,
the well-known binomial model is a natural choice for estimating the distribution of student's
number-correct score sk and making decisions. Hence, the binomial density function is a
convenient choice as the psychometric model involved (see also Millman, 1972). Its
distribution relating the observed number-correct score sk (0 < sk < k) to student's true level

of functioning t, f(sk | t), at stage k of sampling (1 £k < n) can be written as follows:

f(silt) = (i‘k)ﬁk (1-t)*=k . e))

If each response is independent of the other, and if the examinee's probability of a
correct answer remains constant, the probability function of si, given the true level of

1functioning t, is given by Equation 1 (Wilcox, 1981). The binomial model assumes that the
¢
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test given to each student is a random sample of items drawn from a large item pool (van den
Brink, 1982; Wilcox, 1981). Therefore, for each subject a new random sample of items must
be drawn in practical applications of the adaptive four-action mastery problem, such as, for

instance, in computerized adaptive instructional systems.
Sufficient Conditions for Optimal Sequential Rules to be Monotone

As noted earlier, the optimal sequential rules in this paper are assumed to have monotone
forms. The restriction to monotone rules, however, is correct only if it can be proven that for
any nonmonotone rule for the problem at hand there is a monotone rule with at least the same
value on the criterion of optimality used (Ferguson, 1967, p.55). Using a minimax rule, the
minimum of the maximum expected losses associated with all possible decision rules is taken
as the criterion of optimality.

The maximum expected loss for continuing sampling is determined by averaging the
maximum expected loss associated with each of the possible future decision outcomes relative
to the probability of observing those outcomes (Lewis & Sheehan, 1990). Therefore, it follows
immediately that the conditions sufficient for setting cutting scores for the fixed-length three-
action mastery problem, are also sufficient for the adaptive four-action mastery problem at
each stage of sampling. Generally, conditions sufficient for setting cutting scores for the fixed-
length multiple-decision problem are given in Ferguson (1967, p.286).

First, f(sk | t) must have a monotone likelihood ratio (MLRY); that is, it is required that
for any t] > t9, the likelihood ratio f(si | t1/f(sk | t7) is a nondecreasing function of sx. MLR
implies that the higher the obsefved number-correct score, the more likely it will be that the
latent true level of functioning is high too. Second, the condition of monotonic loss must hold;
that is, there must be an ordering of the actions such that for each pair of adjacent actions the
loss functions possess at most one point of intersection.

The binomial density function belongs to the monotone likelihood ratio family
(Ferguson, 1967, chap. 5). Furthermore, it can be verified from Table 1 that for threshold loss

the condition of monotonic loss is satisfied if at each stage of sampling k (1 <k < n):

(113+ke) - (I23+ke) > (11p+ke) - ke 2 ke - (I1+ke) @)
(I23+ke) - ke > ke - (I3p+ke) > (Ip7+ke) - (13 ]+ke),

i2



Minimax Sequential Procedure - 10

or, equivalently,

113-12321122-13) 3)

1232-132212) - 131
Optimizing Cutting Scores for the Adaptive Four-Action Mastery Problem

In this section, it will be shown how optimal cutting scores for the adaptive four-action
mastery problem can be derived using the framework of minimax sequential decision theory.
Doing so, first the minimax principle will be applied to the fixed-length three-action mastery
problem, given an observed item response vector (x 1,...,xk) (1 €k < n), by determining which
of the maximum expected losses associated with the three actions a|(x1,...,Xk), a2(X1,.-..Xk),
or a3(x|],...,xk) is the smallest.

Next, applying the minimax sequential principle, decision rules for the adaptive four-
action mastery problem are optimized at each stage of sampling k (1 £ k < n) by comparing
this quantity with the maximum expected loss associated with action ag(x{,....xg) (i.e.,

continuing sampling).

Applying the Minimax Principle to the Fixed-Length Mastery Problem

Given X| = x1,....Xk = xk (1 £k < n), it follows that the minimax decision rule for the fixed-
length three-action mastery problem can be found by minimizing the maximum expected
losses associated with the actions aj(x{,...,Xk), a2(X],....xx), and a3(x{,....Xk)-

In searching for a minimax rule for the fixed-length three-action mastery problem,
assuming the conditions of monotonicity are satisfied, we may confine ourselves to partitions
of the range of the observed number-correct scores into three disjoint subsets A = {sk; sk <
sc1(k)}, Az = {sk; sc1(k) < sk < sc2(k)}, and A3 = {sk; sk 2 sc2(k)} for action aj(xp,....xk),
ap(x{,...,Xk), and a3(x{,...,Xk) each with a conditional probability of P(A |t), P(Ap |t), and
P(A3 |t), respectively. It follows that the minimax decision r/ule can be obtained by
minimizing the maximum expected lossess associated with the actions ajp(x[,...Xk),

ap(x1,...,Xk), and a3(x,....xk), or, equivalently, by minimizing the following function:

. BEST COPY AVATLABLE
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M(sc1(k).sc2(k)) = max {Li(scq(k).L2a(sc1(K),sc2(k),L3(sc2(k)), 4

where

L1(5c100) = SUP 1(a} (x - Xi).OP(A] 1)
tSteg

Lo(sc1(K)scak)) = SUp  1(an(x|,....x).0P(A2 | 1)

tel<t<te2

L3(sc20) = SuP I(@3(x .- xk)OP(A3 ). 5
c2

The abovementioned procedure yields the optimal cutting scores s'cl(k) and s'cz(k)
(i.e., the minimax cutting scores with s'cl(k) < s'cz(k)) for a fixed-length three-action mastery
problem with test length k. These minimax cutting scores can be obtained by computing the
values of Li(s¢1(k)), La(s¢1(k).sca(k)), and L3(sca(k)) for all possible values of s¢j(k) and
sc2(k), with s¢(k), sc2(k) = 0,1,2,....k, and then selecting those values s'cj(k) and s ¢p(k) at
which M(s¢1(k),sc2(k)) is the smallest.

For our problem we are not primarily interested in determining the optimal cutting
scores S‘Cl (k) and s'cz(k), however, but more in determining which of the three actions
a1(X1,..-,Xk)» @2(X1,....Xk), OF a3(x1,...,Xk) is optimal, given an observed item response vector
(x1,...,Xk) with number correct-score sk (0 < si <k). In this situation it is more convenient to
apply the following sequential procedure: First, the maximum expected losses associated with
actions a3(xy,...,.xk) and a3(x1q,...,xk) are compared with each other. If the maximum expected
loss associated with action a3 is the smallest of these two quantities, then, action a3(x{,...,.Xk)
is taken. If the maximum expected loss associated with action aj(x{,...,xk), however, is the
smallest, then, this quantity must be compared with the maximum expected loss associated
with action aj(x{,...,.Xk). If the maximum expected loss associated with action ap(xy,....Xk) is
the smallest of these two quantities, then, action aj(xj,...,Xk) is chosen; otherwise action
aj(xi,...,xg) is chosen.

Applying the abovementioned procedure to a given item response vector (Xf,...,Xk)
with observed number correct-score sk (0 < sy < k), it can easily be verified from Table 1 that

mastery (a3(X1,....x)) is declared when the number-correct score s is such that
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k
sup(13,+ke)2(y) YU=-t)* Y+ sup (132+ke)2('y‘)ﬂ(1—t)k-¥+

Ste2 y=sy fel<t<te2 y=sk

sk—1
sup(ke)Z( )ty 1-t)k-y <sup(lzl+ke)2(y)ty(1_t)k-y+

2tc2 t<te) y=sK
k sy—1 k
sup (ke)Z(y) tY(1- 1) ’+sup(l32+ke)2(y)ty(l—t)k'y, (6)
te]<t<tc2 y=sk 2t

where y = 0,1,.k represents all possible values the number-correct score s can take after
having observed k item responses (1 < k < n). Since the cumulative binomial density function

is decreasing in t, it follows that the inequality in (6) can be written as:

k k k k
(15, +ke) Z y)lc,‘(l—tc,)"‘y + (13, +ke) Z [yjtczy(l_tcz)k_y -

y=sk y=sk

k 'k sy —i k
(I3 +ke) Y, }C, (I1-t,) _y+(ke)2(y]tc2y(l—tcz)k°y <

y=sk =0

k (g &k
(1 +ke) D, y}d’(l—tc,)k‘y+(ke)2(y}cg(1—tcz)k"’—

y=sk y=sk
sy k
(ke)Z( }cly(l—tcl)k-y+(132+ke) ( jtczy(l_tcz)k_y- (7)
y=sk y=0\Y

Rearranging terms, it follows that mastery is declared when the number-correct score s is

such that:

k (k
‘132)2( J o =t + (1 +132)Z [yjtczy(l‘tcz)k_y Sly (®

y=sk y=sk

If the inequality in (8) does not hold, it can easily be verified from Table 1 that partial

mastery (ap(x1,....Xk)) is declared if it holds for number-correct score sk (0 < sk <k) that
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k k
sup(lz,+ke)2(‘y‘)ﬂ(1—t)"‘u sup (ke)Z(l;)ty(l—t)k'y+
y=sk

t<teo te1<t<tcy y=sg

skl k
sup (I, + ke)Z(l;)ty(l—t)k'y <sup(ke) Y, (l;)ty(l—t)k’y +
y=0

t2tc tste) y=sk
k k sg-1 k
sup (Ilz+ke)2(y)ty(l—t)k’y+sup (1,3+ke)2(y)ty(l—t)k'y, &)
te]<t<tc2 y=sk 2tc2 y=0

and that nonmastery (aj(xy,....Xk)) is declared otherwise.
Rearranging terms, it follows that partial mastery is declared if the number-correct

score is such that

k (k k (k
(2 +13) Z (yjtcly(l‘tcl)k_y +(lj3 =13 —kyp) Z (yjtczy(l‘tcz)k_y Sli3=ly, (10)
y=sk y=sk

and that nonmastery is declared otherwise.

_ Applying the Minimax Sequential Principle to Adaptive Mastery Testing

The optimal sequential rule (i.e., the minimax sequential rule) at the final stage of sampling n
is given by the minimum of the maximum expected losses associated with the actions
aj(xq,..,Xp), a2(Xy,...,xp), and az(xy,...Xp), since the action agq(xy,...xp) (i.€., continuing
sampling) is not available at that stage of sampling. Minimax sequential rules at the other
stages of sampling k (i.e., 1 £ k < n) are found by first computing the minimum of the
maximum expected losses associated with the actions aj(xy,....Xk), az(xy....Xk), and
a3(xy,....xk), and next comparing this quantity with the maximum expected loss associated
with the action ag(x.....xk)-

Let dg(x1,...,.xk) denote the action aj(x],....xk), a2(X{,...,Xk), OF a3(X1,....xk) (1 £k <
n) yielding the minimum of the maximum expected losses associated with these three actions,
and let the maximum expected loss associated with dg(xy,...,xk) be denoted as Vk(xy,....Xk)-
These notations can also be generalized to the case that no observations has been taken yet;
that is, dg(xg) denotes the action aj(xg), ap(x(), or a3(xg) which yields the smallest of the
maximum expected losses associated with these three actions, and V(xg) denotes the

smallest maximum expected loss associated with dg(x(). From the foregoing it then follows

T A
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that the minimax sequential rules for our adaptive four-action mastery problem can be found
by using the following backward induction computational scheme:

First, the minimax sequential rule at the final stage of sampling n is computed which is
given by dp(x1,...,xp); its associated maximum expected loss is given by Vn(x1,....xp). Next,
the minimax sequential rule at stage (n-1) of sampling is computed by comparing
Vn-1(X{,....xp-1) with the maximum expected loss associated with action ag(x|,...xp.1) (i.e.,
continuing sampling). As noted before, the maximum expected loss associated with taking
one more observation, given X = x|,...,Xp.| = Xp.1, is computed by considering all possible
future decision outcomes at stage n (i.e., xp = 0 or 1) relative to the probability of observing
those outcomes (i.e., backward induction).

Let P(X l X1 = x{,-.-Xp-1 = Xp-1) denote the conditional distribution of X, given
the observed item response vector (X {,....Xp. 1), then, the maximum expected loss associated
with taking one more observation after (n-1) observations have been taken,

E[Vp(x1...Xp-1.Xp) | X1 =x1,-Xp-1 = Xp-1], is computed as follows:

E[Vn(x1,..Xp-1-Xp) | X1 =x1,0Xp-1 =%Xp-11=
Vi(X]seXp = OP(Xp =01 X1 = X 1o Xpo] = Xpo1) +
V(X [aoXp = DPXp = 11X1 = %100X0o1 = Xn21)- (1)

P(Xk | X| = x1,...Xk-1 = Xk-1) is also called the posterior predictive distribution of
Xk at stage (k-1) of sampling (1 <k < n). It will be indicated in the next section how this
posterior predictive distribution can be computed.

Hence, given X| = x{,...,.Xp-] = Xp-1, it follows that at stage (n-1) of sampling the
minimax sequential rule is given by: Take one more observation (i.e., action ag(x{,...,Xp-1)) if
E[Vn(x1,...xp-1-Xp) | X1 = X1,.6Xp-1 = Xp-1] is smaller than V_1(xy,....xp-1), and take
action dp_j(x{,....xp-1) if E[Vp(X{se.sXp-1.Xp) | X1 = x{,...Xp-1 = Xp-1] is larger than
Vn-1(X1,--0Xp-1)- FE[V(x{5...Xp-1.Xp) | X1 =x15.-Xp-1 = Xp-1] and V. 1(x{,...,Xp-1) are
equal to each other, it does not matter whether or not the decision-maker takes one more
observation.

Analogous to the computation at stage (n-1), the minimax sequential rule at stage (n-2)
can be computed by comparing Vy,_2(X1,....xp-2) with the maximum expected loss associated

with taking one more observation. In order to compute the maximum expected loss associated

i7
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with taking one more observation at stage (n-2), first the minimum of the maximum expected
losses associated with actions aj(x{,....Xn-1), a2(X,.-Xn-1)s @3(X,--Xp-1), and ag(X1,....Xp-
1) at stage (n-1) i§ computed. This quantity is called the conditional minimax expected utility
at stage (n-1), given X = x1,...Xp.] = xp.1, and will be denoted as Rp_1(x],....xp-1). It
follows that Rp_i(xf,...Xp.1) is equal to the minimum of Vyp_j(x],...xp.1) and
E[Vn(X]yXn-1.Xn) | X1 = X100 X101 = xp21]-

At stage (n-2) of sampling, the maximum expected loss associated with taking one
more observation after (n-2) observations, E[Rp_1(X1,....xp-2.Xp-1) | X1 = x1,0Xp2 =

Xp-2], can now be computed as follows:

E[Rp 1 (X1 seXn2:Xp- D 1 X1 = X100 X112 = Xp0] =
Rp- (X1, Xn-1 = OPKp-q = 01X = X1, X2 = xp0) +
Ry 1(X]seXp-1 = DPKpop = 11X] = %1,000X -2 = X-2). (12)

Given X = x],...,Xp-2 = Xp.2, the minimax sequential rule at stage (n-2) of sampling
can now be found by comparing E[Rp.1(X{,...Xp-2.Xp-1) | X1 = X150y Xp-2 = xp-2] and
Vn-2(x1,...,xp-2) with each other. Hence, it follows that one more observation is taken (i.c.,
action a4(x{,...,.xp-2)) if E[Rp1(x1,....xp-2.Xp-1) | X1 = X]5..Xp-2 = Xp-2] is smaller than
Vn-2(X1,...Xxpn-2), and action dp_2(x1,....Xp-2) is taken if E[Rp_1(X{,...Xp-2,Xp-1) | X1 =
X1,--»Xp-2 = xp-2] is larger than Vi o(X1,...xp.2). In the case of equality between
Vn-2(X1,-.,%p-2) and E[Rp.1(X1,wsXn-2,Xn-1) | X1 = X15..Xp-2 = Xp-2], it does not matter
again whether or not the decision-maker takes one more observation.

Following the same computational backward scheme as in determining the minimax
sequential rules at stages (n-1) and (n-2), the minimax sequential rule at stage (n-3) can be
obtained by comparing Vj,_3(x],....xp-3) and E[Rp_2(x],...Xp-3,Xp-2) | X1 =x1.0Xp3 =
Xp-3] with each other. The conditional minimax expected loss at stage (n-2),
Rp-2(X];..Xp-2), is thereby computed inductively as the minimum of Vj_2(x,....xp-2) and
E[Rp 1 (X 1Xn-2.Xp-1) | X1 = X100 Xp-2 = Xp22].

Similarly, following the same computational backward scheme, the minimax
sequential rules at stages (n-3),...,1,0 are computed. The minimax sequential rule at stage 0

denotes the decision whether or not to take at least one observation.

s
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Determination of the Least Favorable Prior

As mentioned before, there exists a least favorable prior distribution on the true level of
functioning such that the corresponding Bayes sequential rule is exactly the same as the
minimax sequential rule. In computing the posterior predictive distribution P(Xy | X1 =
X1,..., Xk-1 = Xk-1), the least favorable prior on the true level of functioning is needed (1 < k
< n). Therefore, in this section first the form of the least favorable prior will be investigated.
Let Ip(r,s) denote the incomplete beta function with parameters r and s (r,s > 0) as
tabulated in Pearson (1934) (see also Johnson & Kotz, 1970). It has been known for some

time that

Z( )p (- —Ip(m,n—m+l). (13)

=m

>

Hence, the inequalities in (8) and (10) can be written as:
(131-121-132) I, (sk.k-sg+1) + (123+132) 1, , (sk.k-sg+1) <123, (14)
(I12+121) Ilcl (sk.k-si+1) + (|13-|23-|12)I,C2 (sk.k-sg+1)<ly3 - 123. (15)
Within the framework of Bayesian decision theory, given X| = x1,...,.Xk = X, it can
be verified from Table 1 that mastery is declared for the fixed sample problem if number-

correct score sk (0 < sk k) is such that

(131+ke)P(T < te 1 |'s) + (13+ke)P(te] < T < tea | i) + (ke)P(T 2 tea | sp) <
(I21+ke)P(T <t | sk) + (ke)P(T 2 tn | sk) + (123+ke)P(T 2 t.0). (16)

Rearranging terms, it can easily be verified from (16) that mastery is declared if

(131-121-132)P(T < tcq I sk) + (I03+132)P(T < teo i sk) < 3. 17)
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Assuming an incomplete beta prior, it follows from an application of Bayes' theorem
that under the assumed binomial model from (1), the posterior distribution of T will again be a
member of the incomplete beta family (the conjugacy property, see e.g., Lehmann, 1959). In
fact, if the incomplete beta function with parameters o and B (o, B > 0) is chosen as the prior
distribution and student's observed number-correct score is sk from a test of length
k (1 <k < n), then the posterior distribution of T is I(o+sy,B+k-sg).

Hence, assuming an incomplete beta prior, it follows from (17) that mastery is

declared if:
(131-121-132) I, (oe+sk,B+k-sk) + (123+132) I, (o+si,B+k-sk) < 123. (18)

If the inequality in (18) is not satisfied, it can easily be verified from Table 1 that

partial mastery is declared when number correct-score sy is such that

(I21+ke)P(T <t |s) + (ke)Plte < T <ten |'sp) + (123+ke)P(T > ten | sp) <
(ke)P(T <t |'sy) + (112+ke)Pte) < T <tea |sp) +113P(T 2 ten | sp). (19)

and that nonmastery is declared otherwise. Assuming an incomplete beta prior, it follows that

partial mastery is declared if
(I2+2 D1, (osg,Brk-sp) + (113-123-112) I,_, (o+sk,B+k-sg) < 1y3-123, (20)

and that nonmastery is declared otherwise.

Comparing (14) and (15) with (18) and (20), respectively, it can be seen that the least
favorable prior for the minimax solution is given by an incomplete beta prior I(a,) with o
sufficiently small and § = 1. It should be noted that the parameter o > O can not be chosen
equal to zero, because otherwise the prior distribution for T should be improper; that is, the

prior does not integrate to 1 but to infinity. Hence, o must be chosen sufficiently small.
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Computation of P(X| | X1 = X1y Xk-1 = Xk-1)

To compute the maximum expected loss associated with taking one more observation at stage
(k-1) of sampling (1 <k < n), E[Rk(X],....xk-1-Xk | X1 = X150 Xk 1 = xk-1], we need the
posterior predictive distribution P(Xy | X1 = x1,....Xk-1 = Xk-1)- From Bayes' theorem, it

follows that:

P(Xk | X1 = X1 Xke1 = Xp1) =
P(X| = x1,...Xk = x))/PX| = X150, Xk ] = Xk-])- (21

For the binomial model as the psychometric model involved and the incomplete beta
function I,(0,,1) as least favorable prior (with o sufficiently small), it is known (e.g., Keats &

Lord, 1962) that the unconditional distributions of (X{,....Xk) and (X{.....Xk-1) are equal to:

P(X1 =x1,...Xk =XK) =
[T(o+ 1IN (o+s)T(1+k-s ) 1/ [T(o)IT(1) o+ 14k)], 22)

P(X] = X],...,Xk_l = xk-l) =
[T(o+ D (asg- )T (k-s- DIV/T@)T(DT(a+k)], 23)

where T is the usual gamma function. From (21)-(23) it then follows that the posterior

predictive distribution of Xk, given X = x1,..., Xk = X, can be written as:

P(Xk | X1 =X10Xk-1 = Xk-1) =
[C(o+sp)T(1+k-sg)T(a+K) /[T (o+sk - 1 )T (k-sk- 1 )T (a+1+k)]. (24)

Using the well-known identity I'(j+1) = jI'(j) and the fact that sy = sk_q and sk =
sk-1+1 for xk =0 and 1, respectively, it finally follows from (24) that:

(k-s,,)/(a+k) ifx, =0

PX = 3oy -1 = - = 1 25
( k | Xl Xl Xk l Xk l) {(a+sk_l)/(a+k) lka = l ( )

<1
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An Empirical Example

The procedures for computing the minimax sequential decision rules were applied to a
computerized adaptive four-action mastery test for concept-learning in medicine for freshmen.
Concept-learning is the process in which subjects learn to categorize objects, processes or
events, for instance, formation of diagnostic skills in medicine or psychology (see Tennyson
and Cocchiarella, 1986, for a complete review of the theory of concept-learning).

In order to comply with the assumption of the binomial density as psychometric model
involved, it was necessary to draw for each of the students a new random sample of items
from a large pool of items.

The instructors of the program considered students as 'true masters' if they had
mastered at least 60% of the total number of items covering the subject matter of that concept.
Therefore, top was fixed at 0.6. Furthermore, students were considered as 'true nonmasters' if
they had mastered less than 50% of the total number of items covering the subject matter of
the present concept. Therefore, to1 was fixed at 0.5.

Finally, the constant cost for administering one random item was assumed to be rather

small; hence, the value of e was set equal to 0.05.

Results for the Minimax Sequential Rules

Using the lottery method discussed in Vos (1988), assuming equal losses for the correct
decisions 17 1, 122, and 133 and taking into account the requirements 131 > 139 and 113 > 112,
the losses from Table 1 were empirically assessed by the instructors of the program; the

results are presented in Table 2.

Table 2. Threshold Loss Table at Stage k (1 < k < n) of Sampling for Empircal Example

True Level
T <t ta < T <ty T2t
Action
ai(xy, ..., Xx) ke 2+ ke 4 + ke
a)(xy, ..., Xy) 1 +ke ke 2 + ke
ay(xy, ..., Xx) 3+ke 1+ ke ke

As noted before, the sign of [121-123] could not be determined beforehand. In Table 2,
it is assumed that 123 > I3y (i., 123 = 2 and 11 = 1). In other words, for this specific
@ pirical example it is assumed that the loss associated with taking action ay is twice as large
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for a student whose true level of functioning exceeds tc7 than for a student whose true level of
functioning is below t].

Using the numerical values for the loss parameters ]ij (i,j = 1,2,3) of Table 2, for a
maximum of 30 items (i.e., n = 30), the appropriate action (i.e., nonmastery, partial mastery;
mastery, or continue sampling) is depicted in Table 3 at each stage of sampling k (0 < k < n)

for different number-correct score sk (0 < sy <k) as a closed interval.

Table 3. Appropriate Action Calculated by Stage of Sampling and Number-Correct

Stage of sampling Appropriate Action by Number-Correct

Nonmastery  Continue Partial Continue Mastery

Mastery

0 0
1 0 1
2 0 [1,2]
3 0 {1,3]
4 0 [1,3] 4
5 [0,1] [2,4] 5
6 [0,1] [2,5] . 6
7 [0,2] [3,5] [6,7]
8 [0,2] [3,6] [7.8]
9 [0,3] [4,6] [7.,9]
10 [0,3] [4,7] [8,10]
11 [0,4] [5.7] [8,11]
12 [0.4] [5.8] [9,12]
13 [0,5] [6,9] [10,13]
14 [0,5] [6,9] [10,14]
15 [0,6] [7,10] [11,15]
16 [0,6] [7,10] [11,16]
17 [0,7] [8,11] [12,17]
18 [0,7] [8,11] © o [12,18)
19 [0,8] 9 10 [11,12] [13,19]
20 [0,8] [9,10] 11 12 [13,20]
21 [0,9] 10 11 [12,13] [14,21]
22 [0,9] [10,11] 12 [13,14] [15,22]
23 [0,10] 11 12 [13,14] [15,23]
24 [0,10] [11,12] 13 [14,15] [16,24]
25 [0,11] 12 [13,14] 15 [16,25]
26 [0,11] [12,13] 14 [15,16] [17,26]
27 [0,12] 13 [14,15] 16 [17,27]
28 [0,12] 13 [14,16] 17 [18,28]
29 . [0,13] 14 [15,16] 17 [18,29]
30 [0,14] [15,17] [18,30]
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Table 3 was constructed by using the following backward induction computational
scheme. First, the appropriate action at each stage of sampling k (0 < k < n) for the fixed-
length three-action mastery problem (i.e., dx(x|,...,xk)) was determined by examining if the
inequalities in (8) and (10) were satisfied. More specifically, mastery was declared for those
values of sg (0 < si < k) for which the inequality in (8) was satisfied; partial mastery was
declared for those values of sk for which the inequality in (8) was not satisfied but the
inequality in (10) did hold; and mastery was declared for those values of sk for which both the
inequalities in (8) and (10) were not satisfied. Note that it can be inferred from Table 2 that
sc1(30) and s¢2(30) are equal to 14 and 18, respectively.

Next, the appropriate action nonmastery, partial mastery, or mastery and its associated
maximum expected loss were computed at stage 29 of sampling for spg = 0,..,29 (i.e.,
d29(x1,....x29) and Vo9(x1,...,x29)). Using (11), (25), and the maximum expected losses
calculated at the final stage of sampling, the maximum expected loss associated with taking
one more observation at stage 29 of sampling was computed for sog = 0,..,29 (i.e.,
E[V30(x1,....x29,X30) | X1 = X1...X29 = x29]). Comparing these values with
V29(x1....X29), the appropriate action nonmastery, partial mastery, mastery, or continue
sampling was determined at stage 29 of sampling.

In order to compute the appropriate action nonmastery, partial mastery, mastery, or
continue sampling at stage 28 of sampling, first the conditional minimax expected loss at
stage 29 of sampling was computed (i.€., Rpg(x{,...x29)) by taking the minimum of
Va9(x1,....x29) and E[V3p(x1,....X29,X30) | X1 = x1....X29 = x29] for sp9 = 0,...,29. Next,
using (12) and (25), the maximum expected losses associated with taking one more
observation at stage 28 of sampling, E[R29(x}....,x28.X29) | X1 = x1,...X28 = x28] were
computed for spg = 0,...,28. Comparing these values with Vog(x]....,x2g8), the appropriate
action nonmastery, partial mastery, mastery, or continue sampling was determined at stage 28
of sampling.

Similarly, the appropriate action at stage 27 until stage 0 of sampling was determined.
The conditional minimax expected loss at stage 28 of sampling, R7g(x1,....x28), was thereby
computed inductively as the minimum of Vg(x1y,....x28) and E[R29(x1,...,x28,X29)|X1 =
X1,...X28 = x28] for spg = 0,...,28.
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. . k+1 k k ' n n
Using the recurrent relation = + , in combination with = =
y+1 y y+1 n 0

1, for computing the binomial coefficients in (8) and (10), a computer program called
MINIMAX was developed to determine the appropriate action at each stage of sampling.
Furthermore, the parameter a in (25) of the incomplete beta prior was set equal to 10-9. A
copy of the program MINIMAX is available from the author upon request.

As can be seen from Table 3, the decision-maker takes at least one observation. Table
3 also shows that at stage k of sampling, a student whose percentage number-correct (i..,
sk/k) is in the region of t.] or tco is hard to be classified as a nonmaster, partial master, or
master. For such students longer tests are needed, since continue sampling is the appropriate
action in this situation. Shorter tests can be provided, however, for students whose percentage
number-correct is not in the region of tc| or tco. The main advantage of variable-length
mastery testing, as stated already in the Introduction, is demonstrated here clearly; that is, the
test is adapted to the actual level of functioning.

Furthermore, Table 3 shows that continue sampling decisions are taken for the first
time after 18 items have been administered in situations where neither clearly partial mastery
nor mastery can be declared. Continue sampling decisions are taken at each stage of sampling,
however, in situations where neither clearly nonmastery nor partial mastery can be declared.

This finding might be accounted for that the losses associated with taking false
nonmastery decisions are twice as large as the losses associated with taking false partial
mastery decisions (i.e., 2 and 4 relative to 1 and 2), whereas the differences between the losses
associated with taking false partial mastery and mastery decisions (i.e., 1 and 2 relative to 3
and 1) are not that large. Consequently, it seems better to continue sampling if students neither
have clearly attained a certain level of nonmastery nor partial mastery in order to avoid
relatively large expected losses associated with taking false decisions.

Finally, it can be inferred from Table 3 that with increasing number of items being
administered, less continue sampling decisions are taken; that is, the probability of a
classification decision increases.

Since at least one observation is taken, the minimax sequential procedure starts with
administering one ramdomly selected item and stops after a classification decision (ﬁ.e.,
declaring nonmastery, partial mastery, or mastery). Hence, the minimax sequential procedure
proceeds only after the continue sampling decision. Then, it can easily be inferred from Table

? that the minimax sequential decision rule, in case of stopping sampling after a classification

<9
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decision, can be depicted in Table 4 at each stage of sampling k (1 < k < 30) for different

number-correct score sk (0 < s < k) as follows:

Table 4. Minimax Sequential Rule in Case of Stopping Sampling after Classification

Stage of sampling Minimax Sequential Rule by Number-Correct

Nonmastery  Continue Partial Continue Mastery
Mastery

1 0 1

2 [1,2]

3 [1,3]

4 [1,3] 4

5 1 [2,4]

6 [2,5]

7 2 [3.5] 6

8 [3,6]

9 3 [4,6] 7

10 [4,7]

11 4 [5,7] 8

12 [5,8]

13 5 [6,9]

14 [6,9] 10

15 6 [7,10]

16 [7,10] 11

17 7 [8,11]

18 [8,11] 12

19 8 9 10 [11,12]

20 [9,10] 11 12 13

21 9 10 11 [12,13]

22 [10,11] 12 [13,14]

23 10 11 12 [13,14] 15

24 [11,12] 13 [14,15]

25 11 12 [13,14] 15 16

26 [12,13] [15,16]

27 12 13 [14,15] 16 17

28 13 14 0r 16 17

29 13 14 or 17 18

30 14 15or 17 18

Note that not all possible number-correct scores sk are necessarily present at each
stage of sampling k, because it is assumed in Table 4 that the minimax sequential rule stops
after classifying a student as a nonmaster, partial master, or master. For instance, the number-
correct score s5 can only take the values 1 until 4, and thus, not the values 0 and 5. This is

because nonmastery and mastery was already declared for s| = 0 and s4 = 4, respectively,

~n
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implying the minimax sequential rule stops for s| = 0 or s4 = 4. It follows that $2, 83, s4, and
s5 can only take the values [1,2], [1,3], [1,4], and [1,4], respectively.

As can be seen from Table 4, at the final stage of sampling (i.e., stage 30) the number-
correct score s3() can only take the values 14, 15, 17, or 18. In other words, values larger than
18 and smaller than 14 can not occur for s3(, whereas the value of 16 can not occur as well.
This is because for all possible values of s3 equal to or smaller than 14, students have already
been clearly classified as a master, partial master, or nonmaster before the final stage of
sampling has been reached. For the possible value of s3g = 16, students could possibly have
been classified already at stage 25 or 28 as a master or partial master, respectively. Possible
values of s3q larger than 18 can not occur, since students would have clearly attained already
a certain level of mastery, partial mastery, or nonmastery for values of s (1 <k < 30) equal to

or smaller than 18.
Discusston

Optimal rules for the adaptive four-action mastery problem (nonmastery, partial mastery,
mastery, and continuing sampling) were derived using the framework of minimax sequential
decision theory. The binomial distribution was assumed for the psychometric model involved,
whereas threshold loss was adopted for the loss function. The least favorable prior, needed for
computing the maximum expected loss associated with continuing sampling, turned out to be
the incomplete beta prior with parameter o sufficiently small and parameter B equal to 1. The
minimax sequential rules were demonstrated by an empirical example for concept learning in
medicine, with a maximum test length of 30.

The results indicated that the chances of being classified as a nonmaster, partial
master, or master increased if the number of items administered increased. This result was in
accordance with our expectations. Furthermore, the minimax sequential decision rules in case
of stopping sampling after a classification decision were computed at each stage of sampling
for different number-correct score. It turned out that, for instance, at the final stage of
sampling (i.e., after 30 items have been administered) the number-correct score could only
take the values of 14, 15, 17, or 18.

It is important to notice that, as pointed out by Veldhuijzen (1982) and Huynh (1980),
the minimax principle is very attractive when the only information is the student's observed

~1mber-correct score; that is, no group data of 'comparable' students or prior information
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about the individual student is available. This situation is often the case in individualized
instructional programs. If group data of 'comparable’ students or prior information about the
individual student is available, however, it is better to use this information in the minimax
sequential decision procedure regarding declaring mastery, partial mastery, or nonmastery.
Hence, in this situation it is better to use Bayesian instead of minimax sequential decision
theory. Even if information in the form of group data of 'comparable' students or prior
information about the individual student is available, it is sometimes too difficult a job to
accomplish to express this information into a prior distribution. In these circumstances, the
minimax sequential procedure might also be more appropriate.

Several procedures have been proposed which are simple variants of the minimax
strategy (e.g., Coombs, Dawes, & Tversky, 1970), and may also be applied to the adaptive
four-action mastery problem. The first is the minimin (complete optimism) strategy, where
optimal rules are obtained by minimizing the minimum expected losses associated with all
possible decision rules. This strategy is optimal if the best that could happen always happens.
As pointed out by Veldhuijzen (1982), the minimin strategy seems rather useless in the
context of individualized instructional programs.

The second is the pessismism-optimism (Hurwicz) strategy. This strategy is a
combination of the minimax and minimin strategies, and decisions are taken on the basis of
the smallest and largest expected losses associated with each possible decision outcome.

The third is the minimax-regret (Savage) strategy. This strategy is similar to the
minimax strategy since the focus is on the worst possible decision outcome, but 'worst' is here
defined by maximal regret; that is, the difference between the maximal expected loss that was
actually obtained, and the maximal expected loss among all possible decision outcomes.

Two final notes are appropriate. First, it might be assumed that guessing has to be
taken into account. Huynh (1980) has developed a model with corrections for guessing within
a minimax decision-theoretic framework (see also van den Brink & Koele, 1980) for the
fixed-length two-action mastery problem (i.e., mastery/nonmastery) in case of a linear loss
function. This framework of correction for guessing (i.e., knowledge-or-random-guessing) can
be used to derive minimax sequential rules for the adaptive four-action mastery problem.

Second, the minimax sequential decision procedures presented in this paper were
applied to the problem of deciding on nonmastery, partial mastery, nonmastery, or continuing
sampling in the context of computerized adaptive mastery testing. It should be emphasized,

Qo hawever, that the decision-making procedures advocated here have a larger scope. For
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instance, the adaptive four-action mastery problem may be important in clinical settings where
therapies are followed by mastery tests, which decide on whether or not patients are dismissed

from the therapies.
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